
VIRUS BULLETIN www.virusbtn.com

55555AUGUST 2004AUGUST 2004AUGUST 2004AUGUST 2004AUGUST 2004

MOSTLMOSTLMOSTLMOSTLMOSTLY HARMLESSY HARMLESSY HARMLESSY HARMLESSY HARMLESS
Peter Ferrie and Frédéric Perriot
Symantec Security Response, USA

The LSASS vulnerability of Microsoft security bulletin
MS04-011 affects Windows 2000 and XP, the two most
widespread Microsoft operating systems today. It is a stack
overflow, hence easily and reliably exploitable – and eEye
was kind enough to provide the world with thorough
documentation of the possible exploitation vectors.

Following in the path of previous high-profile
vulnerabilities, the LSASS bug was quickly targeted by
proof-of-concept exploits, themselves reused in worms
including W32/Sasser.A. Despite the publicity that
surrounded Sasser due to its immediate success following
its appearance (30 April 2004), this was not the first worm
to make use of the vulnerability: some LSASS-exploiting
Gaobot variants had surfaced about a week earlier. However,
it was the automated infection of new systems that was the
decisive factor in making Sasser more widespread.

BISTROMABISTROMABISTROMABISTROMABISTROMATHICSTHICSTHICSTHICSTHICS

Sasser infects new systems by exploiting one of the many
vulnerabilities announced in the MS04-011 bulletin. The
vulnerability is related to a stack buffer overflow in the file
lsasrv.dll, which is normally loaded as part of the lsass.exe
process (Local Security Authority Subsystem Service).

In order to find new victims, Sasser scans random IP
addresses for vulnerable machines listening on port 445/tcp.
Once such a machine is found, it attempts to exploit the
LSASS vulnerability by sending a specially crafted RPC
request to the LSASS named pipe on the machine. Upon
successful exploitation, shell code is injected into the
lsass.exe process, which executes a shell (cmd.exe) and
binds it to a TCP port. The attacking instance of the worm
then connects to this port and sends commands to the shell.
These commands download and run the main worm
executable on the newly infected system.

The worm download is carried out through FTP, using the
default Windows ftp.exe program on the client side (victim).
On the server side (attacker), Sasser implements its own
crude FTP server, which listens on a non-standard TCP port.
The infection scheme of Sasser is very similar to that of
W32/Blaster (see VB September 2003, p.10), with the
exception of using FTP instead of TFTP as the main
transmission protocol. Worms get more reliable!

Once it is running on a new machine, Sasser installs itself in
the Windows directory under the name ‘avserve.exe’ and
registers itself in ‘HKLM\...\Run’ as the value ‘avserve.exe’,

VIRUS ANALYSIS 2

VIRUS BULLETIN www.virusbtn.com

66666 AUGUST 2004AUGUST 2004AUGUST 2004AUGUST 2004AUGUST 2004

in order to run on Windows startup. Then Sasser simply tries
to infect new systems. There is no intended payload,
time-triggered routine, or anything other than replication
code in this worm.

INFINITE IMPROBABILITY DRIVEINFINITE IMPROBABILITY DRIVEINFINITE IMPROBABILITY DRIVEINFINITE IMPROBABILITY DRIVEINFINITE IMPROBABILITY DRIVE

Sasser generates target IP addresses using three different
methods: completely random IPs are used 52 per cent of the
time; random IPs located in the same /16 network as the
host are used 27 per cent of the time; and random IPs
located in the same /8 network as the host are used 21 per
cent of the time. This method of skewing probabilities
towards nearby hosts was used in W32/Welchia (see VB
October 2003, p.10). The aim is to increase the probability
of hitting vulnerable hosts, on the assumption that nearby
machines suffer from the same misconfiguration problems.

The network scanning speed per attack thread is a
maximum of four attacks per second, and Sasser spawns
128 attack threads running in parallel.

VOGON POETRVOGON POETRVOGON POETRVOGON POETRVOGON POETRYYYYY
In addition to the scanning threads, Sasser creates an extra
thread devoted to listening for incoming connections on its
FTP server port, 5554/tcp. Each incoming FTP connection
is then serviced by a newly spawned thread.

Despite its extreme simplicity, the FTP server code in
Sasser is buggy. All the code does is reply to five basic FTP
commands – ‘USER’, ‘PASS’, ‘PORT’, ‘RETR’ and
‘QUIT’ – with some canonical answers, to please the ftp
client of the other side of the connection, and serve the
worm executable over an FTP data channel.

In the one command requiring a minimal amount of parsing,
‘PORT’, there lurks a buffer overflow due to the use of a
strcpy() call (more on this later).

Sasser creates an embryonic log file in ‘c:\win.log’. This
may, originally, have been intended as a list of compromised
systems, but due to what appears to be a bug, it remains
always one line long. The file contains the IP address of the
last system successfully infected, and a counter indicating
how many systems have been infected from the local
machine, in total, since the worm started running.

BABEL FISHBABEL FISHBABEL FISHBABEL FISHBABEL FISH
Sasser exploits one vulnerability, but it really makes use of
two different exploits, depending on the platform that it is
attacking. We shall refer to them as the ‘short-form’ and
‘long-form’ exploits. Moreover the ‘long-form’ exploit has
two variants, using two different trampoline addresses.

In order to determine which Windows platform it is
attacking, the worm fingerprints the remote target system by
establishing a NULL session with it, and checking the
Native OS field of a session setup response packet. Based
on the contents of the Native OS field, ‘5.1’, ‘5.0’, or neither
of these two strings, Sasser picks the short-form, long-form
(first variant) or long-form (second variant) exploit, targeted
respectively at Windows XP, Windows 2000 and unidentified
systems. The NULL session packets produced by Sasser
seem to originate from a regular Windows 2000 system,
because the author of the exploit captured sample traffic and
simply replayed it in the exploit code.

The mode of operation of the short-form exploit, used
against Windows XP, is to hijack a return address. The
trampoline address used in this case points to a ‘call esp’
instruction located in the address space of the lsass.exe
module itself. (This is contrary to the comment in the
publicly available source code of the exploit, which
mentions it as a ‘jmp esp’.)

The long-form exploit is more complicated: it attempts to
hijack both a return address and an exception handler on the
stack. The trampoline address used against unidentified
systems points to a ‘call ebx’ instruction in netrap.dll. The
one used against Windows 2000 systems points to a ‘jmp
ebx’, according to the author of the exploit – but we have
not been able to verify this information on our test
platforms. The combined hijacking of a return address and
an exception handler is probably designed to improve the
reliability of the exploitation. In our tests, however, only the
exception handler part was needed, and the sole purpose of
hijacking the return address was to trigger an exception.
(For more detail on the control flow of the exception
handler hijacking trick, see VB, September 2001, p.4).

The layout of the attack buffers and the control flow of the
exploits are depicted opposite.

HEARHEARHEARHEARHEART OF GOLDT OF GOLDT OF GOLDT OF GOLDT OF GOLD

Regardless of the exploit flavor, the attack starts by opening
a connection to port 445/tcp of the target system, then going
through the same protocol negotiation and session setup as
in the fingerprinting. Next, the ‘\lsarpc’ named pipe is
opened on the remote system, and an RPC request is made
against the LSA_DS (Directory Services) interface.

In the short-form exploit, Sasser sends an approximately
2kb attack buffer to the LSA_DS interface. The RPC
request is small enough to fit in one RPC fragment, and
the entire request is carried out with a single named
pipe transaction. In the long-form exploit, the attack
buffer is about 7kb long and the RPC request is split into
two fragments.

VIRUS BULLETIN www.virusbtn.com

77777AUGUST 2004AUGUST 2004AUGUST 2004AUGUST 2004AUGUST 2004

As for the fingerprinting, the network traffic generated by
the Sasser exploits is more akin to a replay than truly
synthesized. The author of the HouseOfDabus exploit,
which is reused in Sasser, is likely to have obtained it by
sniffing traffic from a first-generation exploit that relied on
a modified version of netapi32.dll, which was tampered
with to allow an extra parameter in the signature of the

DsRolerUpgradeDownlevelServer() function. This function
employs the LSA_DS RPC interface for legitimate purposes,
but normally operates against the local system only. The
extra parameter in the version that has been tampered with
identifies a machine, thus allowing remote exploitation.

The effect of the malformed request to the LSA_DS
interface is a stack buffer overflow in the
DsRolepDebugDumpRoutine() logging function of
lsasrv.dll. The vulnerable function is normally used to write
information to a file called ‘DCPROMO.LOG’, located in
the ‘%windows%\debug’ directory. It employs a 2kb stack
buffer to hold log file lines, and it exercises no bounds-
checking prior to using a sprintf(‘%ws’) function to fill the
buffer. By providing an over-long value corresponding to
the ‘%ws’ parameter, Sasser controls the return address and
the rest of the stack after the buffer, which allows the
execution of arbitrary code. Sasser relies on this to execute
its shell code.

The exact sprintf() function in the buggy log routine varies
among operating systems and service packs. For Windows
2000, the function is imported from msvcrt.dll, and is
sprintf() in SP0, and vsprintf() in SP4. For Windows XP, the
function is imported from user32.dll, and is wsprintfW() in
SP0 and wvsprintfW() in SP1a.

The use of Unicode and ASCII functions (with or without
the leading ‘w’ in the function name) explains the need for a
long-form exploit and a short-form exploit providing more
or fewer bytes in the ‘%ws’ parameter for different platforms.

ZAPHOD WZAPHOD WZAPHOD WZAPHOD WZAPHOD WAS HEREAS HEREAS HEREAS HEREAS HERE
Surprisingly, Sasser performs the attack twice for each
target machine. The likely explanation for this behaviour is
also related to the kind of sprintf() function used in
DsRolepDebugDumpRoutine(), more specifically to the use
of the user32.dll implementation of sprintf() on Windows
XP platforms.

The user32.dll implementation of the sprintf() functions has
a limit of 1024 characters (not bytes – Microsoft’s
documentation is not quite correct) that it will place in the
destination buffer. Once the limit is reached, no further data
are placed in the buffer. On the first exploitation attempt of
a Windows XP system, when the logging routine is called
from DsRolerUpgradeDownlevelServer(), this limitation is
encountered because the size of the ‘%ws’ parameter
combined with the log line header exceeds 1024 characters.

As a result, the stack buffer is missing a final carriage return
and a flag is set, indicating that the next bit of log
information should simply be appended to the current line.
On the next exploitation attempt, the flag is checked and the
long ‘%ws’ parameter is copied to the stack buffer without a

VIRUS BULLETIN www.virusbtn.com

88888 AUGUST 2004AUGUST 2004AUGUST 2004AUGUST 2004AUGUST 2004

header. The ‘%ws’ parameter alone fits in the buffer, no
stack overflow occurs, and ‘eventually’ (readers are
welcome to contact us if they have questions about this) the
aforementioned flag is reset, allowing exploitation again.

The net effect is that exploitation of Windows XP systems
works only every other time – at least under normal
conditions. This explains the double attempt at exploitation
by Sasser. The author might have assumed that the same
condition could occur while attacking Windows 2000
machines, but we have not observed this in our tests.

Once the lsass.exe process is coerced into running the shell
code injected by the worm, the code binds to port 9996/tcp,
accepts a connection from the attacker and runs a ‘cmd.exe’
shell as the SYSTEM user. The commands sent to the shell
cause the worm executable to be FTP’d to a file whose
name starts with four to five random digits followed by
‘_up.exe’.

DON’T PANIC!DON’T PANIC!DON’T PANIC!DON’T PANIC!DON’T PANIC!

Despite the obvious success of its spreading mechanism,
Sasser suffers from a major limitation: it uses the wrong
exploit parameter when it attempts to infect English
versions of Windows 2000 systems. Tests in the lab show
that the trampoline address used by Sasser against English
versions of Windows 2000 Workstation, Server and
Advanced Server, SP0 and SP4, does not correspond to a
branch, but to another instruction (a locked ‘mov’) that
causes an exception when reached (including from the
exception record hijacked by Sasser, which leads to a crash).

We believe this behaviour is related to the single-byte vs.
double-byte character platform issue, and that the Sasser
exploit targeted at Windows 2000 systems works only
against double-byte character platforms. This is
corroborated by reports from the field: of all Sasser
submissions received by Symantec from the ‘C:\WINNT’
directory (the default installation directory for Windows
2000, whereas Windows XP uses ‘C:\WINDOWS’ by
default), the vast majority originated from machines located
in Taiwan and China. The source of the other submissions
was unclear, but the names of the users suggested they may
have been double-byte character platforms as well.

Thus, Sasser’s exploit is effective only against Windows XP
and some versions of Windows 2000. It fails against
Windows 2003 Server (in fact, the buggy function is not
even called).

DISASTER AREADISASTER AREADISASTER AREADISASTER AREADISASTER AREA
As in the case of W32/Blaster and other exploit-based
worms, the end result of missed exploitation attempts

against vulnerable systems is often a crash of the attacked
process. The crash – in lsass.exe in the case of Sasser –
manifests itself as an error message box warning the user
that the system will be shut down. The author of the
worm tried to call AbortSystemShutdown() from the main
worm executable to prevent this suspicious behaviour,
apparently overlooking the fact that the main worm code
does not run at all if the exploit fails! On the other hand,
if the worm is running successfully on a system that is
then incorrectly compromised, the error message box
might not appear.

If the exploit succeeds, the shell code terminates with an
ExitThread() call after spawning the shell. This is clean
enough by itself to ensure that the lsass.exe process keeps
running, and makes the use of AbortSystemShutdown()
unnecessary.

RESISTRESISTRESISTRESISTRESISTANCE IS FUTILEANCE IS FUTILEANCE IS FUTILEANCE IS FUTILEANCE IS FUTILE

From the point of view of Network Intrusion Detection,
Sasser has one interesting feature: it sends the FTP data and
the shell commands byte-by-byte, which results in the
network traffic it sends being split into TCP segments
starting at unpredictable boundaries. This may have been
designed as a way to evade IDS products which do not have
the capability to reassemble TCP streams. It may also have
been accidental, since no such care is taken when the RPC
attack buffer is sent. Nevertheless, the potential exists to
mislead some IDS systems.

It was not long before a jealous contender attempted to
take advantage of the vulnerability in Sasser’s FTP server
code. W32/Dabber, which appeared on 14 May 2004, does
just this.

Soon a whole new branch of the security industry will
appear, specializing in detecting exploitation of worm
vulnerabilities: “Protect your Sasser-infected machines with
JamScan. JamScan not only stops Dabber, it also protects
you against future worms exploiting the same flaw!”

W32/Sasser.A

Aliases: W32.Sasser.Worm, WORM_SASSER,
Worm.Win32.Sasser.

Size: 15,872 bytes.

Type: Internet worm.

Exploits: LSASS vulnerability, MS04-011,
CAN-2003-0533.

